RECOVER: Standardizing Veterinary CPR

JOSEPH M. DEFULIO, LVT
SAINT FRANCIS VETERINARY CENTER
WOOLWICH TOWNSHIP, NEW JERSEY

RECOVER Overview

- RECOVER
 - Reassessment Campaign on Veterinary Resuscitation
- Published in 2012, reevaluating in 2017
- Main goal
 - Develop a set of clinical consensus guidelines for the practice of CPR in dogs and cats based upon an extensive, systematic review of the literature in the context of our target species
Clinical Guideline Class Descriptors

<table>
<thead>
<tr>
<th>Class</th>
<th>Risk:benefit ratio</th>
<th>Clinical recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Benefit >>> Risk</td>
<td>Should be performed</td>
</tr>
<tr>
<td>IIa</td>
<td>Benefit >> Risk</td>
<td>Reasonable to perform</td>
</tr>
<tr>
<td>IIb</td>
<td>Benefit ≥ Risk</td>
<td>May be considered</td>
</tr>
<tr>
<td>III</td>
<td>Risk > Benefit</td>
<td>Should not be performed</td>
</tr>
</tbody>
</table>

Clinical Guidelines Level Descriptors

<table>
<thead>
<tr>
<th>Level</th>
<th>Populations studied</th>
<th>Criteria for recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Multiple populations</td>
<td>Multiple high quality and/or high level of evidence studies</td>
</tr>
<tr>
<td>B</td>
<td>Limited populations</td>
<td>Few to no high quality and/or high level of evidence studies</td>
</tr>
<tr>
<td>C</td>
<td>Very limited populations</td>
<td>Consensus opinion, expert opinion, guideline based on physiologic/anatomic principles, standard of care</td>
</tr>
</tbody>
</table>
Clinical Guideline Class & Level Examples

- Crash cart – standardization and regular audit of the location, storage, and content of resuscitation equipment is recommended – I-A

- Supplemental Oxygen Administration – during CPR in dogs and cats, the use of an FiO\textsubscript{2} of 100% is reasonable – IIa-B

- Corticosteroids – the routine use of corticosteroids during CPR is not recommended – III-C

Emergency Preparedness

- Staff cardiopulmonary resuscitation (CPR) training (didactic components & hands-on skills), at a minimum, every six months

- Organized and frequently audited crash cart
 - Review contents and drug expiration dates at the end of each shift
 - Apply a piece of tape across all of the drawers with the date and your initials once it has been audited

- Presence of cognitive aids
 - Emergency drugs and doses chart (cage cards too)
 - CPR algorithm
CPR Status

- Ensure that a CPR status is obtained on all patients, especially those that are being admitted to the hospital and/or undergoing anesthesia

- SFVC
 - CPR
 - DNR (do not resuscitate)

- Other method
 - Green: open or closed chest CPR
 - Yellow: closed chest CPR only
 - Red: DNR

Team Dynamics

- Leader
 - Distributing tasks, enforcing rules and procedures
 - Does not need to be a doctor; does not change during code

- Compressor(s) (thoracic +/- abdominal)
 - Performing external cardiac compressions
 - Changes every two minutes

- Ventilator
 - Adequately ventilating the patient

- Advanced Life Support (ALS)
 - Monitoring equipment, vascular access, drug administration

- Recorder
 - Document all details of CPR
Closed Loop Communication

- Closed loop communication is imperative
- The leader will give a request, whomever is performing the task should repeat it to verify accuracy, and then perform it
- Results in a reduction of medical errors

Critical Care Monitoring Sheet
"CPR Flow Sheet"

- Recommended to use whenever working with a critical patient, but required for use during CPR
- Aids in tracking crucial information, including, but not limited to:
 - CPR start and end times
 - Drug administration quantities and times
- Become familiar with the form so that it is not your first time seeing it during a code
Crash Cart – Exterior & Drawer 1

- Exterior
 - Monophasic defibrillator
 - Multi-parameter monitor
 - 5 fully stock drawers
 - Tape indicating recent audit

- Drawer 1
 - Emergency drugs
 - Defibrillator gel
 - Venipuncture supplies
 - Vascular access supplies
Crash Cart – Drawers 2 & 3

- **Drawer 2**
 - Endotracheal intubation supplies
 - Airway suction supplies

- **Drawer 3**
 - Pericardiocentesis kits
 - Thoracocentesis kits
 - Trochar catheters

Crash Cart – Drawers 4 & 5

- **Drawer 4**
 - Fluid therapy supplies (crystalloids and colloids)
 - Aerokat (albuterol sulfate)

- **Drawer 5**
 - Ventilation supplies
 - Stomach pump
 - Gastric decompression/lavage tubes
CPR Algorithm

- Step-by-step approach to initiating CPR in a patient that is in cardiopulmonary arrest (CPA)
- Intended to be used as a quick reference
Basic Life Support (BLS)

- BLS includes
 - Recognition of CPA
 - Chest compressions
 - Airway management
 - Ventilation

- When thinking of BLS, remember the mnemonic “CAB”
 - C: circulation
 - A: airway
 - B: breathing

- BLS cycles last 2 minutes
Cardiopulmonary Arrest

- Cessation of cardiac output and respirations
 - Respiratory arrest first, cardiac shortly thereafter

- CPA should be detected within 5-10 seconds
 - Evaluate airway, breathing, circulation (ABC)
 - In humans, pulse palpation is a poor indicator of CPA
 - Auscult your patient
 - Agonal breath indicate that CPR should be started

- If there is uncertainty in CPA detection, initiate CPR
 - Starting CPR on a patient not in CPA carries minimal risks

Cardiopulmonary Resuscitation

- Goal of CPR is return of spontaneous circulation (ROSC)

- ROSC is achieved 35-45% of the time in canine and feline patients

- Survival to discharge rates range between 2-10% in canine and feline patients
Patient Positioning

- Dorsal recumbency (barrel-chested dogs)
- Lateral recumbency (left or right is acceptable; most dogs and cats)
- Dorsal recumbency (barrel-chested dogs)

Compression Techniques

- Small dogs and cats (<10 kg)
 - 1-handed technique, hand circumferentially around the sternum, directly over the heart

- Alternate technique ("larger" small dogs and cats, lower thoracic compliance)
 - 2-handed technique directly over the heart
Compression Techniques

- Small dogs and cats (<10 kg); compliant chests
- “Larger” small dogs and cats, lower thoracic compliance

- Medium, large, and giant breed dogs
 - Point of maximum intensity (widest portion) of the chest

- Keel-chested (i.e. greyhounds)
 - Directly over the heart

- Barrel-chested (i.e. English bulldogs)
 - Sternal compressions directly over the heart
Compression Techniques

- Medium, large, and giant breed dogs
- Keel-chested (i.e. greyhounds)
- Barrel-chested (i.e. English bulldogs)

Technique Critique
Cardiac Pump Theory

- Dorsal recumbency: cardiac ventricles are directly compressed between the sternum and spine
- Lateral recumbency: cardiac ventricles are directly compressed between the ribs
- Most cats and small dogs (with thoracic wall compliance), barrel-chested and keel-chested dogs

Thoracic Pump Theory

- Chest compressions increase the overall intrathoracic pressure, which in turn compresses the aorta and collapses the vena cava; this process causes blood flow out of the chest
- Most medium, large, and giant breed dogs
Chest Compressions

- Don’t delay compressions for ET intubation
- Compressions rate: 100-120 per minute (cats & dogs)
- Compression depth: 1/3 to 1/2 width of the chest
- Allow full elastic recoil between compressions
 - Reduced coronary and cerebral perfusion in pigs if full elastic recoil is not allowed
 - High prevalence of leaning in human CPR
- Switch compressors every 2 minutes to avoid fatigue

Interposed Abdominal Compressions

- Perform abdominal compressions opposite of chest compressions
- Facilitates venous return from the abdomen, thus increasing cardiac output
- Minimal evidence of abdominal trauma
- Reasonable when there are enough team members
Open-Chest CPR

- More effective than closed-chest CPR in restoring ROSC
- Direct cardiac massage

Indications
- Hemoabdomens
- Intra-operative arrests
- Large dogs
- Pneumothorax
- Pericardial effusion

Disadvantages
- Financial endeavor
- Need experienced team
- Need surgical back-up
- Risk of infection

Airway & Ventilation

- Rapid endotracheal intubation (lateral or dorsal)
 - Suction available, if needed
- Intubate while compressions are being performed
- The use of a laryngoscope is strongly advised
- Secure the ETT and inflate the cuff
- Mouth-to-snout ventilation if performing CPR alone (30:2)
Airway & Ventilation

- Ventilation rate: 10 breaths per minutes
- Tidal volume: 10 mL/kg
- Inspiratory time: 1 second
- FiO$_2$: 100% (unless ABG dictates otherwise)
- If patient is hooked up to an anesthesia circuit, turn off the inhalant, flush the circuit and begin ventilation; not required to switch to an ambu bag

Advanced Life Support

- Should ideally be occurring while BLS is underway
- If BLS and ALS are performed promptly, initial ROSC rates can be as high as 50% in canine & feline patients
- ALS
 - Monitoring equipment
 - Vascular access
 - Drug administration
 - Defibrillation
 - Precordial thump
Monitoring Equipment

- Electrocardiogram (ECG)
 - Subject to artifact during CPR
 - Quickly evaluate during intercycle pauses

- End-tidal carbon dioxide (ETCO₂)
 - Early indicator of ROSC
 - Sudden increases in ETCO₂ can indicate ROSC
 - Dogs: ETCO₂ > 15 mmHg – increased rate of ROSC
 - Cats: ETCO₂ >20 mmHg – increased rate of ROSC

Vascular Access

- Intravenous (IV)
 - Cephalic
 - Saphenous (lateral, medial)
 - +/- jugular
 - +/- cut down

- Intraosseous (IO)
 - Often times easier and quicker than IV access in neonatal & pediatric patients
Drug Administration

- Routes of administration
 - IV/IO (preferred)
 - Intratracheal (IT) if unable to obtain IV/IO access
 - Intracardiac (IC) is not recommended

- IT administration
 - NAVEL (naloxone, atropine*, vasopressin*, epinephrine*, lidocaine); no sodium bicarbonate
 - Increased doses (insufficient data – up to 10x for epinephrine)
 - Dilute with 0.9% NaCl and administer via a red rubber catheter (RRC) down the ETT (RRC should be longer than ETT)

Arrest Drugs

- Epinephrine (1 mg/mL)
 - Can cause myocardial ischemia and arrhythmias
 - Low dose: 0.01 mg/kg every other BLS cycle
 - High dose: 0.1 mg/kg (consider for prolonged CPR)
 - Increased rate of ROSC but not survival to discharge

- Vasopressin (20 U/mL)
 - Works well in acidic environments
 - Decreased risk of myocardial ischemia
 - Can use in conjunction with or in place of epinephrine
 - Dose: 0.8 U/kg
 - Dose every 3-5 minutes (every other round of BLS)

- Atropine (0.54 mg/mL)
 - Parasympatholytic
 - Most likely useful for dogs and cats with asystole or PEA associated with high vagal tone
 - Dose: 0.04 mg/kg
Antiarrhythmic Drugs

- Amiodarone (50 mg/mL)
 - Ventricular fibrillation (VF)/pulseless ventricular tachycardia (pulseless VT) resistant to defibrillation
 - Dose: 5 mg/kg

- Lidocaine (20 mg/mL)
 - Refractory VF/pulseless VT, +/- increased J/kg with monophasic defibrillator
 - Dose: 2 mg/kg

Reversal Drugs

- Naloxone (0.4 mg/mL)
 - Opioid reversal
 - Dose: 0.04 mg/kg

- Flumazenil (0.1 mg/mL)
 - Benzodiazepine reversal
 - Dose: 0.01 mg/kg

- Atipamezole (5 mg/mL)
 - α-2 reversal
 - Dose: 100 μg/kg
Electrolyte Therapy

- Hypocalcemia often develops with prolonged CPA, however, calcium should not be administered during CPR (no effect or worse outcome)

- Hyperkalemia often develops with prolonged CPA; in the event of hyperkalemia, treatment can be considered (minimal supporting evidence)

Corticosteroids

- Lack of evidence to prove corticosteroids beneficial

- Potential for side effects, especially with poor perfusion

- Not recommended
Fluid Therapy

- Fluid therapy is not recommended in patients that are euvoletic or hypervolemic.
- Hypovolemic patients should be treated with IV fluids.
- NOTE: Never administer a full shock bolus; administer in increments with reevaluations of the patient in between.

Defibrillation

- Delivery of an electrical shock that depolarizes all myocardial cells.
- Monophasic defibrillation: unidirectional current flows from one electrode to another.
- Biphasic: current initially flows in one direction, then reverses and flows in the other direction.
- Guidelines:
 - No isopropyl alcohol on patient.
 - Patient can not touch metal surfaces.
 - No one should be in direct contact with the patient.
Defibrillation

- Shockable rhythms
 - Ventricular fibrillation
 - Pulseless ventricular tachycardia

- Dose
 - Monophasic (external): 4-6 J/kg
 - Biphasic (external) 2-4 J/kg

- Always follow defibrillation with one full round of CPR

Shockable Rhythms

- Pulseless ventricular tachycardia
- Ventricular fibrillation
Precordial Thump

- Strike the patient with the heel of your hand directly over the heart
- Some efficacy for treatment of VF and pulseless VT
- Defibrillation is recommended (when available) over precordial thump

CPR Emergency Drugs and Doses

<table>
<thead>
<tr>
<th>DRUG</th>
<th>DOSE</th>
<th>2.5</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epi Low</td>
<td>0.01 mg/kg</td>
<td>0.03</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
<td>0.35</td>
<td>0.4</td>
<td>0.45</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epi High</td>
<td>0.1 mg/kg</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td>3.5</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasopressin (20 U/50)</td>
<td>0.8 U/kg</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atropine (0.4 mg/ml)</td>
<td>0.04 mg/kg</td>
<td>0.2</td>
<td>0.4</td>
<td>0.8</td>
<td>1.1</td>
<td>1.5</td>
<td>1.9</td>
<td>2.2</td>
<td>2.6</td>
<td>3</td>
<td>3.3</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lidocaine (20 mg/ml)</td>
<td>2 mg/kg</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td>3.5</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naloxone (0.4 mg/ml)</td>
<td>0.04 mg/kg</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td>3.5</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flumazenil (0.1 mg/ml)</td>
<td>0.01 mg/kg</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td>3.5</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atipamezole (5 mg/ml)</td>
<td>100 μg/kg</td>
<td>0.06</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Defib (J)</td>
<td>4-6 J/kg</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>140</td>
<td>160</td>
<td>180</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Defib (J)</td>
<td>0.5-1 J/kg</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Post-Cardiac Arrest (PCA)

- Monitoring
 - ECG
 - ETCO$_2$ (hypocapnia can lead to decreased cerebral blood flow)
 - +/- ABG
 - (N)IBP
 - Glasgow-coma scale
- Mild therapeutic hypothermia (MTH)
 - Organ protecting effects in PCA patients
 - Initiate on patients that remain comatose ASAP after ROSC; maintain for 24-48 hours
 - Need mechanical ventilator
 - Avoid rapid warming

Post-Cardiac Arrest

- Corticosteroids
 - Routine administration is not recommended
 - Hydrocortisone can be considered in canine and feline patients that remain hemodynamically unstable despite fluids and pressors
- Hyperosmotic therapy
 - Cerebral edema identified with people in the PCA period
 - Consider hypertonic saline or mannitol (diuretic effects; adjust fluids accordingly)
Seizure prophylaxis
- Prognostic significance of seizure is uncertain in canine and feline patients
- Can be considered with barbiturates (i.e., Phenobarbital) during the PCA period

PCA care should be sent to referral hospitals, as they require intensive care and monitoring

Post-Cardiac Arrest Care Algorithm

- **RESPIRATORY OPTIMIZATION**
 - Spontaneous breathing?
 - No: Tidal Supplemental Oxygen
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
Post-CPR Debriefing

- Should occur after every code
- Review and critique your performance and skills, as well as your team’s performance and skills
- Prevent focusing on blaming individuals
- Can lead to enhancement of CPR performance

Other Terminology

- CCR: cardiocerebral resuscitation
- CPCR: cardiopulmonary cerebral resuscitation

*CPR is the preferred terminology over CPCR
Sources

Questions?

One, two, three, BREATHE

He’s dead, Jim