Principles of Transfusion Medicine

Liza Wysong Rudolph, BAS, CVT, VTS (CP, SAIM)
Saint Francis Veterinary Center, New Jersey
Introduction

- Blood group systems
- Pre-transfusion diagnostics
- Donor selection
- Product collection
- Component therapy
- Transfusion administration
- Recognition and treatment of transfusion reactions
Canine Blood Group System

- No naturally occurring alloantibodies
- **Dog Erythrocyte Antigen** – 7 types
- DEA 1
 - Clinically most important
- DEA 1.1
 - Most antigenic type
 - Used for typing purposes
 - Positive and negative
Canine Blood Group System

- DEA 1.1 negative
 - 55% of dogs
 - Often considered ‘universal’ donor in animals *that have never been transfused*
 - Least immunogenic/antigenic - more appropriate term

- DEA 1.1 positive
 - Can be given to a negative dog
 - May not see acute reaction
 - Will decrease RBC survival time
Canine Blood Group System

- DEA 4 positive
 - 99% of dogs are positive
 - ‘Universal’ if negative for all antigens except DEA 4
 - Only 15% of canine population would qualify

- DAL group
 - Can induce a reaction
Feline Blood Group System

- Naturally occurring alloantibodies
- AB blood group system
- Type A (95%) – a/a, a/b, a/ab
 - Most common to DSH/DLH in USA
 - Dominant over types B and AB
- Type B (5%) – b/b
 - Most common in exotic shorthair, Cornish and Devon rex
 - More common in Europe/Australia
- Type AB (<1%) – ab/b
 - Rare - Ragdolls?
Feline Blood Group System

- **Type A**
 - 20% have weak anti-B antibodies

- **Type B**
 - 100% have strong anti-A antibodies

- **Type AB** – rare
 - No naturally occurring alloantibodies
 - IF AB blood is not available, use type A

- **Mik group**
 - positive vs negative or Mik vs non-Mik
Neonatal Isoerythrolysis (NI)

- Hemolytic Reaction
- Cats
 - Fading kitten syndrome
 - (B) queen + (A) tom = (A) kittens
 - Anti-A transferred to kittens via colostrum
- Dogs
 - Results from incompatible transfusions
 - Sensitized (−) female + (+) male = (+) puppies
 - Anti-(+) transferred to puppies via colostrum
Blood type determination
Blood type determination
Crossmatching

- Compatibility of donor and recipient
- Incompatibility results in autoagglutination and hemolysis
 - Do not transfuse
 - Find an appropriate donor

http://www.cdha.nshealth.ca/pathology-laboratory-medicine/clinical-chemistry/hemolysis
Crossmatching

- Major Crossmatch
 - Donor RBC’s with recipient plasma
 - Most important
- Minor Crossmatch
 - Donor plasma with recipient RBC’s
Crossmatching

- Cats
 - Ideally should be recommended in all transfusions
- Dogs
 - ≥ 4 days since initial transfusion
 - History of transfusion reaction
 - Breeding animal
 - Transfusion history unknown
Crossmatch - gel kit

Positive for agglutination

Negative for agglutination
Crossmatch - manual

- EDTA tube from recipient and possible donor(s)
- Centrifuge at 1000 x 9 for 5 minutes
- Remove plasma from each sample with clean pipette
 - Transfer to no-additive RTT and label – put aside
- Wash RBCs 3 times with saline solution
- Re-suspend to make 3 – 5% RBC solution
 - 1 drop RBC: 20 drops saline = 5%
Crossmatch - manual

- Prepare for each donor 3 tubes labeled with Major, Minor, and Recipient control.
- Add to each tube 2 parts of plasma and 1 part of RBC suspension
 - Major BCM: recipient plasma + donor cells
 - Minor BCM: donor plasma + recipient cells
- Recipient control: recipient plasma + recipient cells
- Gently mix and incubate for 15 minutes
Crossmatch - manual

- Centrifuge for 15 sec. at 1000 x 9
- Examine supernatant for hemolysis
- Gently resuspend button of cells by tapping tube with a finger and examine for macroscopic agglutination
- Transfer a small amount onto a glass slide and examine for microscopic agglutination
Crossmatch - slide

- **Major BCM**
 - 2 drops recipient plasma + 1 drop donor EDTA blood

- **Minor BCM**
 - 2 drops donor plasma + 1 drop recipient EDTA blood

- **Emergency**
 - 1 drop donor + 1 drop recipient
Donor Selection/Screening

- 1 to 7 years of age
- Neutered/spayed
 - Not pregnant/breeding
- UTD on vaccines
- No medications
 - Heartworm/flea/tick prevention
- No heart murmur
- No previous transfusions
Product Storage

- Blood
 - 1 to 6°C/34 to 43°F
 - Hung with space in-between units - diffusion
- Frozen Plasma
 - Below -18°C/0°F
 - Stored as far away from the door as possible
 - No automatic defrost cycle
- Blood bank/blood product refrigerator/freezer, or a designated area in a quality unit
- Away from medications/chemicals
- No not store blood in refrigerator drawers
Blood Products

<table>
<thead>
<tr>
<th>Blood Product</th>
<th>Storage</th>
<th>Clotting Factors</th>
<th>Functional Platelets</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Whole Blood</td>
<td>< 8 hours</td>
<td>Yes</td>
<td>Yes</td>
<td>Acute hemorrhage, DIC</td>
</tr>
<tr>
<td>Stored Whole Blood</td>
<td>28-35 days</td>
<td>No</td>
<td>No</td>
<td>Anemia, hypoproteinemia</td>
</tr>
<tr>
<td>pRBC</td>
<td>28-35 days</td>
<td>No</td>
<td>No</td>
<td>Anemia</td>
</tr>
<tr>
<td>Fresh Frozen Plasma (FFP)</td>
<td>1 year</td>
<td>Yes</td>
<td>No</td>
<td>Coag factor deficiencies, hypoproteinemia</td>
</tr>
<tr>
<td>Frozen Plasma</td>
<td>4-5 years</td>
<td>II, VII, X</td>
<td>No</td>
<td>Many coagulopathies/hemostatic disorders, hypoproteinemia</td>
</tr>
<tr>
<td>Cryoprecipitate (CRYO)</td>
<td>1 year</td>
<td>VIII, vWf, fibrinogen</td>
<td>No</td>
<td>vonWillebrand, Hemophilia A, hypofibrinogenemia</td>
</tr>
<tr>
<td>Cryoprecipitate-poor plasma (CRYO-poor)</td>
<td>1 year</td>
<td>Yes; except VIII, vWf, XIII, and fibrinogen</td>
<td>No</td>
<td>Hypoproteinemia, some coagulopathies</td>
</tr>
<tr>
<td>Platelet rich plasma</td>
<td>24 hours</td>
<td>Yes</td>
<td>Yes</td>
<td>Thrombocytopenia w/ hemorrhage</td>
</tr>
</tbody>
</table>
Blood product administration

• Aseptic technique imperative
• Warming blood prior to administration is unnecessary
• Avoid giving blood products through anything smaller than a 22 gauge IV catheter
• Avoid pressure bagging unless absolutely necessary
• All blood products should be administered via blood administration set/filter
Blood product administration

- Avoid using any supplies (line, filter) beyond 4 hours due to risk for contamination
- The filter chamber should be completely filled
- Only 0.9% NaCl should be administered in the same line with blood
- Only use a fluid pump specifically approved for blood transfusion by the manufacturer
- Hemonate filters – 50-60mL
Blood product administration

- It is unnecessary to dilute pRBC prior to administration
- Avoid feeding or administering any other medication at the same time
- Pre-treatment is not recommended
Blood product administration

- Are fluid pumps and syringe pumps reasonable in dogs?
- Autotransfusion returned via gravity, syringe pump + 18μm filter, or peristaltic fluid pump
- Circulating cells 24 hours after transfusion
 - Fluid pump 4/8 subjects
 - Syringe pump 1/7 subjects – completely gone at day 7
 - Gravity fed group 8/8
- Average half life was 43 days

Blood product administration

- Are syringe pumps reasonable in cats?
- Autotransfusion returned via gravity or syringe pump + 18μm filter
- Circulating cells 12 hours after transfusion
 - Syringe pump 6/6 subjects
 - Gravity fed group 5/5 subjects
- Average half life was 23 days

Calculating Drip Rates

• Divide unit volume by 4 to get ml/hr?
 • Alternatively, can start slower and increase rate
• # of mL/hr x 10 drops/ml = drops/hour
• Drops/hour 60 minute/hour = drops/minute
• Drops/min 60 second/min = drops/second
\[
\frac{\text{ml}}{\text{hr}} \times \frac{10 \text{ drops}}{\text{ml}} \times \frac{1 \text{ hr}}{60 \text{ min}} \times \frac{1 \text{ min}}{60 \text{ sec}} = \frac{\text{x}10}{3600}
\]

Drops per second
Patient Monitoring

Donor Manufacturer/Distributor:

Patient Blood Type:

PCV/TP:

Weight (kg):

Reason for transfusion:

Crossmatch: Major ☐ Minor ☐ Clinician:

Administration Amount:

Duration:

Rate:

Pretreatment:

Dose:

Route:

Time:

Quantity:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>0</th>
<th>15 min</th>
<th>30 min</th>
<th>45 min</th>
<th>1 hr</th>
<th>2 hr</th>
<th>3 hr</th>
<th>4 hr</th>
<th>5 hr</th>
<th>6 hr</th>
<th>8 hr</th>
<th>10 hr</th>
<th>12 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate (mL/hr or drop/sec)</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Pulse</td>
<td></td>
</tr>
<tr>
<td>Resp Rate</td>
<td></td>
</tr>
<tr>
<td>NIBP</td>
<td></td>
</tr>
<tr>
<td>Vomit (+/-)</td>
<td></td>
</tr>
<tr>
<td>Dyspnea (+/-)</td>
<td></td>
</tr>
<tr>
<td>Other Rxn</td>
<td></td>
</tr>
</tbody>
</table>

Transfusion reactions may include vomiting, increase in heart rate or temperature, diarrhea, angioedema, hypotension, or collapse. Notify clinician immediately in the event of a possible transfusion reaction.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>> HR ></th>
<th>> RR ></th>
<th>> Temp ></th>
<th>> NIBP ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If a reaction is suspected

- Stop the transfusion – record volume and rate of transfusion
- Notify clinician
- Double check patient is getting correct blood type/product
- Examine patient and donor unit for hemolysis
- Crossmatch a pre- and post-transfusion sample
- Blood cultures
- Pigtail PCR or culture
Transfusion Reactions

Immunologic
- Immune mediated hemolysis
- Febrile nonhemolytic reactions
- Allergic reactions

Non-immunologic
- Transfusion-associated sepsis
- Transfusion-associated circulatory overload
- Nonimmune-mediated hemolysis
Immune-Mediated Hemolysis

- An acute reaction
- Severity depends on number of RBC’s destroyed
- Clinical signs include:
 - Fever, restlessness, vomiting
- Will also lead to:
 - Hypotension
 - Hemoglobinemia/hemoglobinuria
 - Acute renal failure
- Stop the transfusion and resuscitate
Febrile non-hemolytic reactions

- Increase in body temperature greater than 1 °C (1.8 °F) that can’t be blamed on another reaction

- Treatment
 - Slow or stop the transfusion
 - NSAID? Steroids?
 - Diphenhydramine?
Allergic reactions

- Anywhere from hives, anaphylaxis, and death
- Usually afebrile reaction
- Stop transfusion and give diphenhydramine
- Restart if signs resolve
 - Respiratory signs
 - Hypotension
 - GI Signs

ABORT!
Non-immunologic Reactions

- Sepsis (or other disease)
 - Contamination
- TACO - Transfusion-associated circulatory overload
- Hemolyzed samples
 - Improper storage
 - Warming blood
 - Mechanical damage
- Hypocalcemia
- Hypothermia
- Coagulopathy
Delayed transfusion reactions

- No clinical signs during the transfusion
- PCV markedly decreases
 - 3-5 days or 1-3 weeks post-transfusion
Delayed transfusion reactions

- Due to:
 - Low levels of recipient antibodies against donor antigen – may be caught with cross-match
 - After transfusion, these antibodies go into production and destroy transfused cells
 - The transfusion itself induces new antibody production
 - Won’t pick up on cross-match
 - Culprit antibodies not present pre-transfusion
Conclusion

- Highly skilled and knowledgeable veterinary technicians are indispensable to patient care!
- Pre-transfusion donor testing should be thorough and reliable
- Monitor transfusion patients closely
- Know how to recognize a reaction, be able to tell the difference, and know what to do
- Transfusions are not straightforward. Risks and benefits must be weighed with every patient.

Wells RJ. Transfusion Medicine. Western Veterinary Conference. 2012.

Transfusion - Questions?

Your red blood cells are being attacked by kittens.

If we don't act soon, you will die of happiness.
Principles of Transfusion Medicine

Liza Wysong Rudolph, BAS, CVT, VTS (CP, SAIM)
Saint Francis Veterinary Center, New Jersey
LWR@SaintFrancis.org